Алюминий проводит электричество

Содержание

Самый электропроводный металл в мире

Алюминий проводит электричество

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), — серебро. Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток.

Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл.

На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство — высокая теплопроводность.

Топ лучших проводников — металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро — 62 500 000.
  2. Медь – 59 500 000.
  3. Золото – 45 500 000.
  4. Алюминий — 38 000 000.

Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.

Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

Самый электропроводный металл — это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

Источник: http://fb.ru/article/222201/samyiy-elektroprovodnyiy-metall-v-mire

Лучшие проводники электрического тока: характеристики веществ, пропускающих электричество

При использовании электроприборов человек постоянно сталкивается с веществами, которые являются проводниками, полупроводниками и диэлектриками, не проводящими ток. Эти материалы отличаются степенью электропроводности. Для того чтобы работать с бытовой техникой, необходимо знать все их особенности и характеристику. Выбрать лучший проводник электрического тока можно из металлов.

  • Особенности понятия
  • Первый и второй род
  • Процессы в электропроводниках

Проводниками тока называют те вещества, в которых количество свободных электрических зарядов превышает число связанных. Они могут начинать двигаться под влиянием внешней силы. Состояние материалов может быть газообразным, твёрдым и жидким. Электричество может протекать по металлической проволоке, если её подключить между двумя проводниками с разными потенциалами.

Ток переносят электроны, не связанные между собой атомами. Именно они способны охарактеризовать способность предмета пропускать через себя электрические заряды, или величину проводимости тока. Её значение обратно пропорционально сопротивлению, она измеряется в сименсах: См = 1/Ом.

Основные носители электричества в природе — это ионы, дырки и электроны. Поэтому способность к проводимости делят на три вида:

  • ионную;
  • электронную;
  • дырочную.

Приложенное напряжение даёт возможность оценить качество проводника. Эту способность вещества называют ещё вольт-амперной характеристикой.

Первый и второй род

После того как получилось разобраться с тем, что проводит электрический ток, нужно узнать особенности некоторых веществ. Проводники могут быть разными — металлическая проволока, морская вода. Но в них ток различается, поэтому вещества делят на две группы:

  • первого рода, в которых электричество протекает по электронам;
  • второй вид — на основе ионов.

К первым относят все металлы и углерод. Ко второму роду относят щелочи, кислоты, соляные расплавы — электролиты. В них ток представляет упорядоченное движение отрицательных и положительных ионов. Электричество в таких материалах протекает при любом показателе напряжения. В обычных условиях хороший проводник электрического тока — это изделие из золота, серебра, алюминия или меди.

Их двух последних материалов изготавливают кабели, отличающиеся низкой стоимостью. Качественное жидкое вещество, проводящее ток — ртуть, а также ток хорошо протекает через углерод. Но это вещество не обладает гибкостью, поэтому на практике его не применяют. Хотя физики недавно смогли представить углерод в форме графена, что позволило из его нитей изготавливать шнуры.

У графеновых изделий сопротивление такое, что оно является недопустимым для проводников. Их позволительно использовать только в нагревателях. В этом случае металлические провода из никеля и хрома проигрывают, так как они не могут выдержать очень высокую температуру. Спирали в лампах дневного света изготавливают из вольфрама. Этот материал способен накаливаться, так как вещество является тугоплавким.

Процессы в электропроводниках

Во время протекания электричества проводник попадает под определённое воздействие. Самое главное — это повышение температуры. А также выделяют некоторые химические реакции, которые могут изменить физические свойства вещества. Более всего такому влиянию подвергаются проводники второго рода. В них протекает химическая реакция, которую называют электролизом.

Ионы веществ около электрических полюсов получают необходимый заряд и восстанавливают исходное состояние, которое было у них до образования щелочи, кислоты или соли. С помощью электролиза химики и физики могут получать чистые химические вещества из природного сырья. Таким образом создают алюминий и другие виды металлов.

Вещества первого и второго рода участвуют в других процессах, кроме проводимости электричества. К примеру, во время взаимодействия кислоты со свинцом возникает химическая реакция, которая вызывает выделение тока. По такому принципу работают все аккумуляторы.

Проводники первой группы при контакте друг с другом могут изменяться. Медь и алюминий при эксплуатации нужно покрывать специальной оболочкой, иначе оба металла просто расплавятся. Влажный воздух приведёт к тому, что произойдёт электрохимическая реакция.

Поэтому проводники покрывают слоем лака или другого защитного материала.

Некоторые проводники не могут оказывать электричеству сопротивление при холодном воздухе. Такое явление называют сверхпроводимостью, которая соответствует значению температуры, близкой к химическому состоянию жидкого гелия. Но исследования привели к тому, что есть новые проводники с высокими показателями температуры.

Такие вещества были открыты в 20 веке. Керамика из кислорода, бария, меди и лантана при обычных условиях не проводит ток, но после нагревания становится сверхпроводником. На практике выгодно использовать вещества, которые могут пропускать электричество при 58 градусах по Кельвину и выше — температуре, превышающей отметку кипения азота.

Читайте также  Как провести электричество на участок без построек

Жидкость и газы, проводящие ток, используют реже твёрдых веществ. Но и они необходимы для изготовления современных электрических приборов.

Источник: https://220v.guru/elementy-elektriki/provodka/luchshie-provodniki-elektricheskogo-toka.html

Какая проводка лучше медная или алюминиевая и почему

Представить дом или квартиру без электричества в наш век невозможно, свет поступает во все квартиры и дома. Чтобы определить какая проводка лучше медная или алюминиевая необходимо рассмотреть характеристики двух материалов и провести сравнительный анализ.

Алюминиевая проводка

Данный тип проводки получил широкое распространение в жилых домах и квартирах всей страны еще во времена СССР. Встретить алюминий можно и сейчас, в любом доме старше 15-20 лет. Связано это было с такими параметрами сплава, как:

Так как алюминий весит намного меньше меди, его больше применяют при прокладке линий электропередач, что позволяет уменьшить нагрузку на опоры, соответственно сэкономить на их изготовлении и монтаже. Согласно ПУЭ при монтаже новой сети не применяют алюминиевые кабели сечением менее 16 мм2. Не стоит сбрасывать со счетов и дешевизну, так как медь стоит дороже.

Минусы

Однако даже качественный алюминиевый провод имеет больше минусов, чем плюсов. К негативным моментам относят:

  • меньшая электрическая проводимость, чем у меди (разница в 2 раза);
  • способность окисляться при контакте с воздухом (в результате окисления на поверхности провода образуется слой, который не проводит электрический ток, что уменьшает полезное сечение и увеличивает сопротивление);
  • меньший срок службы (составляет 20-25 лет, после чего резко возрастает вероятность пожара из-за окисления и последующего нагревания контактов);
  • слабая механическая прочность (после нескольких изгибаний алюминиевый кабель легко ломается);
  • сложность монтажа (обеспечить необходимую проводимость придется в этом случае, выбирая кабели большего сечения, с которыми крайне неудобно работать. Такие кабели выпускаются только одножильными).

Совет! Можно проверить качество алюминия на излом, для этого при покупке в магазине попробуйте 4-6 раз согнуть провод, если его поверхность быстро покрывается трещинами, значит провод хрупкий и работать с ним будет тяжело. Понятно, что лучше отказаться от такого товара.

Медная проводка

При покупке или строительстве дома, квартиры желательно использовать этот тип проводки. Однако, имейте ввиду, что, заменив проводку в квартире вы еще не получили надежную и способную выдерживать большие нагрузки сеть. Не забывайте, что вводной кабель от лестничного щитка до квартиры в старых квартирах всегда выполнен из алюминия. Следует заменить этот участок, ведь его проводимость теперь слабое место новой сети.

Достоинства медной проводки

Сравнение параметров, представленных ниже с параметрами алюминия позволит сделать правильный выбор в дальнейшем. Медь, как материал для электропроводки имеет ряд достоинств, к которым относят:

  • хорошую проводимость (даже после окисления пленка на поверхности не препятствует прохождению электрического тока);
  • срок службы доходит до 50 лет;
  • высокую механическая прочность (жила легко выдерживает изгибание и скручивание до 10-15 раз);
  • легкость монтажа (промышленностью выпускается несколько видов проводов с различными параметрами и жилами, с которыми удобно работать).

Минус домашней сети из меди, наверное, один – это ее цена, однако, когда необходимо выполнить качественную проводку отдавайте предпочтение этому материалу.

В строительных магазинах можно приобрести провода из сплавов цинка, покрытых медным напылением. Они стоят дешевле, чем медные, однако и характеристики материалов уступают проводам из чистой меди.

При нехватке средств лучше выполнить комбинированную проводку, розеточную группу отдельно запитать медными проводами, рассчитанными на большую силу тока, а цепи освещения – алюминиевыми. Однако имейте в виду, что соединение алюминий и медь выполняют только через специальные зажимы или соединительные колодки, которые препятствуют прямому контакту меди и алюминия, вызывающему сильное окисление последнего. Из-за окисления стыка вырастает удельное сопротивление контакта, происходит нагрев и обгорание в итоге.

Рассмотрев характеристики легко прийти к выводу, что лучше для выполнения монтажных работ использовать медь, однако при необходимости можно выполнить сеть и из алюминия, вот только следить за ней придется тщательнее. Выбирать тот или иной тип проводки необходимо с учетом требований электробезопасности, ведь от этого зависит как долго прослужит сеть без необходимости вмешательства специалистов.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://vseobelektrike.com/elektroprovodka/kabeli-i-provoda/kakaya-provodka-luchshe-mednaya-ili-alyuminievaya.html

Титан

В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ).

Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости.

В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него.

Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы.

По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.

Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм.

Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.

Химические свойства

Чистый титан – это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии.

Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение.

Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.

Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород.

При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Способы получения

Титан является одним из самых распространённых элементов на Земле. его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%).

Читайте также  Экономичное отопление частного дома электричеством

Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.

Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана – это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Источник: http://cu-prum.ru/titan1.html

Преимущества и недостатки алюминиевой проводки

Прочитав эту статью, вы узнаете о таких вопросах:

В любой сфере нашей жизни мы активно используем электричество. Конечно, наличие электричества в доме является одним из главных требований нашего существования. Это электричество подается по проводам. Причем они подходят как к самому дому или квартире, так и проходят по всем комнатам нашего дома. Для передачи электрического тока используются различные типы проводки.

Наиболее популярной является проводка алюминиевая. Собственно на такой проводке мы и остановимся в этой статье. Сначала хочется отметить, что проводка из алюминия не может похвастаться отличными эксплуатационными характеристиками. Другими словами ее нельзя назвать самой подходящей или же самой идеальной. Однако она встречается практически в каждом доме.

И этот факт обусловлен особенностями самого алюминия.

Преимущества

Этот металл обладает малым весом. Это преимущество сильно сказывается в тех ситуациях, когда нужно использовать большое количество алюминиевого кабеля. Так, легкость этого металла делает алюминиевый кабель фаворитом при прокладке ЛЭП. Стоит отметить, что алюминий — это очень распространенный металл, и он стоит меньше меди. Собственно эти два фактора и стали причиной использования алюминиевой проводки при строительстве жилья в СССР. 

Еще одной чертой, которую можно отнести к преимуществам, является стойкость к коррозии. Хотя здесь есть свои нюансы. Дело в том, что поверхность алюминия при контакте с воздухом сразу (практически мгновенно) окисляется. Сверху образуется пленка, которая в дальнейшем защищает всю остальную часть проволоки от окисления.  Минус заключается в плохой способности пленки проводить ток. В результате в местах соединения кабелей возникают проблемы в прохождении тока.

Недостатки

 Алюминиевая проводка характеризуется высоким удельным электрическим сопротивлением. Это сопротивление равняется 0,0271 Ом х кв.мм/м. Учитывая данный факт, в новейших редакциях ПУЭ отмечается, что в квартире или доме можно использовать только ту алюминиевую проводку, поперечное сечение которой превышает 16 кв. миллиметров.

В конечном итоге получается так, что для обеспечения необходимого уровня пропускной способности нужно использовать кабель с большим сечением. Другими словами нужно монтировать проводку, которая имеет большую толщину. Если сравнивать проводку из меди, то она обладает таким удельным электрическим сопротивлением, которое равняется 0,0175 Ом х кв.мм/м.

Такая проводка более эффективная и для использования в доме можно брать медный кабель с меньшим поперечным сечением. Как уже было отмечено выше, алюминий способен окисляться и пленка, образующаяся во время этого процесса, имеет плохую токопроводимость. Здесь есть еще один нюанс: эта пленка образуется из верхней части провода. В результате происходит небольшое уменьшение его поперечного сечения, а в результате растет сопротивление.

Так как пленка на алюминиевой проводке обладает высоким сопротивлением, то в местах соединения отдельных частей проволоки растет переходное сопротивление. Вследствие этого проявляется в нагревании проводки в таких местах.

В тех ситуациях, когда возрастает нагрузка на алюминиевую проводку, она начинает нагреваться. Если провод обладает достаточным поперечным сечением, то ничего страшного нет.

Однако если проводка не рассчитана на такую нагрузку или используется больше своего нормированного срока эксплуатации, то это обязательно приводит к ее нагреву.

Последний факт можно назвать очень плохим для мест соединения. Дело в том, что при нагревании алюминия происходит изменение его формы и пластичности. Конечно, проволока расширяется. После того, как нагрузка исчезла и кабель остыл, он набирает привычной формы. Однако после неоднократного повторения таких процессов происходит ослабление контакта концов электропроводов.

Алюминий также обладает высокой хрупкостью. Она сильно возрастает после того, как он перегревается. Что касается срока службы, то для алюминиевой проводки он составляет 25 лет. После этого нужно устанавливать другой тип проводки.

Правила использования алюминиевой проводки

Как видно, проводку, сделанную из алюминия, не можно назвать наиболее оптимальным вариантом для использования в доме. Однако ее можно использовать, если соблюдать определенные требования:

  1. Поперечное сечение должно быть не менее 16-ти кв. миллиметров.
  2.  Для соединения отдельных частей нужно использовать зажимные контакты. При этом следует использовать специальную смазку, благодаря которой не будет осуществляться окисление контактов, и будет сохраняться низкий уровень переходного сопротивления.

Полезный совет: также соединение можно выполнить другим способом. Он заключается в сварке алюминиевых электропроводов в распределительных коробках. Этот способ требуют больших затрат и больше времени. Поэтому многие электрики пытаются избежать его. Учитывая это, каждый, кто монтирует алюминиевую проводку в своем доме, должен наблюдать за работой электриков.

Сравнение с медной проводкой

Таблица сравнения алюминия и меди в проводке

Отметим, что гораздо проще и более безопасным будет использование медной проводки. Выше мы указывали, что медная проводка характеризуется меньшим удельным сопротивлением. Иными словами медный кабель с тем же сечением, что и алюминиевый, может пропустить большее количество тока. Кроме этого медный электропровод:

  • является более устойчивым к физическим воздействиям (он не ломается после нескольких сгибаний);
  • обладает большим сроком годности;
  • не теряет своих токопроводящих свойств во время окисления.

Приметным фактом является и то, что алюминий и медь окисляются. Однако пленки, которые образовались, имеют разные свойства. В первую очередь это касается токопроводимости. Как мы уже отмечали, окислительная пленка алюминиевой проводки имеет слабую токопроводимость. Аналогичная пленка на медной проводке обладает высокой токопроводимостью. Электропровода, сделанные из алюминия, окисляются значительно быстрее, чем медные провода.

Медь окисляется при комнатной температуре, однако пленка, которая появляется на поверхности меди, очень слабая и ее легко разрушить. Для этого достаточно крепко скрутить два кабеля. Сильное окисление меди начинается тогда, когда температура становится больше 70-ти градусов Цельсия. Можно сделать вывод, что более качественным и, главное, более безопасным является медный кабель. Причина популярности алюминия кроется в его дешевизне.

Почему нельзя скручивать алюминиевый и медный кабели?

Конечно, если вы планируете осуществить замену электропроводки в доме и не имеете возможности установить все электропровода, изготовленные из меди, то можете совместить эти два типа проводки. Другими словами вы можете использовать алюминиевые кабели для подачи тока на осветительные приборы и медные провода для подачи тока к розеткам или мощным электроприборам. При этом в некоторых местах возникнет необходимость соединения медной и алюминиевой проводок.

С самого начала следует отметить, что прямой контакт меди и алюминия как минимум является не рекомендуемым. Это означает то, что скручивать электропровода из двух металлов нельзя. Почему? Причина заключается в их физических свойствах. Эти два металла имеют разные величины токопроводимости и в результате места их соединения будут нагреваться. Также этому способствует наличие окислительных пленок.

Читайте также  Как сделать генератор электричества в домашних условиях

Если говорить об окислительной пленке на медной проводке, то она может проводить ток и поэтому не сильно влияет на нагрев. А вот такая же пленка на алюминиевом электропроводе обладает сильным сопротивлением и, соответственно, пропускает меньше тока.

Данный факт усиливает нагревание. В процессе нагревания кабеля расширяются. Поскольку медь — это более твердый металл чем алюминий, то медный электропровод приводит к некоторой деформации алюминиевого провода.

В результате, когда происходит охлаждение, само соединение выглядит несколько по-другому.

После нескольких раз нагревания и охлаждения соединение ослабляется, а это приводит к появлению проблем в виде перегрева, искрения и горения. Также имеет место и появление гальванической пары. Однако она появляется только тогда, когда на соединение попадает влага.

В противном случае эта пара не образуется. Гальваническая пара появляется потому, что в месте соединения таких проводок, которые мы называем медной и алюминиевой, начинается диссоциация окислов электропроводов. Этот процесс заключается в распаде окиси на заряженные ионы.

После этого заряженные ионы окислов меди и алюминия становятся непосредственными участниками процесса движения тока. В результате они переносят заряд и также движутся. Это особенность приводит к разрушению металла. В конечном итоге в проводке образуются пустоты и раковины. Они в свою очередь уменьшают поперечное сечение и способность проводки пропускать ток.

Конечный итог — перегрев мест соединения. Как мы уже отметили, этот процесс возникает только при наличии влаги. И чем больше влаги в месте скручивания, тем быстрее становится диссоциация. Думаю, вы уже поняли, что допускать попадание влаги на соединение, а также допускать прямой контакт медного и алюминиевого проводов нельзя.

Способы соединения разных типов проводки

Однако, что же делать, если в доме установлена проводка, которая состоит из медных и алюминиевых проводов, и их обязательно нужно соединить. В этом случае нужно использовать болтовые и клеммные соединения. Рассмотрим особенности использования таких соединений. Чаще всего в домах можно встретить соединения типа «орешек». Их так называют потому, что их внешний вид похож на орех. Это соединение образуют три пластины.

Перед монтажом нужно открутить нижнюю и верхнюю пластины. Далее между средней и верхней пластиной устанавливают один провод и прикручивают верхнюю пластину. Аналогично делается со вторым проводом. Когда нижняя пластина является прикрученной, то процесс соединения является законченным. Несколько похожим на «орешек» является болтовое соединение. В данном случае к одному болту приматываются два провода. Однако между ними вставляется анодированная шайба. Далее с помощью гайки закрепляют оба провода.

В той ситуации, когда в доме происходит замена проводки, то медную и алюминиевую можно соединить с помощью пружинных клемм. Они еще называются соединениями типа WAGO. Перед использованием пружинных клемм нужно зачистить провода. Зачистить надо первые 15 миллиметров. После этого их вставляют в отверстия и фиксируют с помощью маленьких рычагов. В середине таких клемм находится смазывающее вещество. Ее действие таково, что оба металла не окисляются.

Полезный совет: использовать пружинные клеммы можно только для проводов, которые являются частью осветительной системы. Использование в силовых цепях является не рекомендованным с той точки зрения, что сильные нагрузки нагревают пружинные контакты. Следствием этого является плохой контакт и плохая проводимость тока.

Соединение с помощью клеммной колодки

Отличным инструментом, который может соединить алюминиевую проводку с медной и не только, являются клеммные колодки. Они состоит из планки, которая имеет клеммники. Чтобы соединить необходимые провода нужно зачистить концы проводов, вставить их в отверстия и затянуть болтом.

Эти типы соединения можно использовать для соединения не только алюминиевого и медного провода, но и проводов, сделанных с любого другого металла. Благодаря такому подходу можно достичь более высокого уровня безопасности, чем при использовании обычного скручивания. Важным условием использования клеммников, болтов, пружинных клемм является регулярная (раз в полгода) проверка контактов.

об использовании алюминиевых проводов

всего оценок:21, средняя: 3,71 из 5)
Загрузка… Где используются гибкие медные кабели, их преимущества и недостатки Каким образом осуществляется прокладка проводки в кирпичном доме и какие инструменты нужны для этого? Применение металлических кабель-каналов в доме, офисе и на производстве Выбираем бронированный медный кабель для дома и квартиры

Источник: http://electricadom.com/preimushhestva-i-nedostatki-alyuminievojj-provodki-a-takzhe-sravnenie-s-provodkojj-sdelannojj-s-medi.html

Проводники и непроводники электричества

/ Слесарное дело / Комплексные работы / Электричество / Проводники и непроводники электричества

Вещества, по которым передаются электрические заряды, называют проводниками электричества.

Хорошие проводники электричества — металлы, почва, растворы солей, кислот или щелочей в воде, графит. Тело человека также проводит электричество.

Из металлов лучшие проводники электричества серебро, медь и алюминий, поэтому провода электрической сети чаще всего делают из меди или алюминия.

Вещества, по которым заряды не передаются, называют непроводниками (или изоляторами). К хорошим изоляторам относятся эбонит, янтарь, фарфор, резина, различные пластмассы, шелк, керосин, масла. Изоляторы (например, резиновую оболочку кабеля) применяют для изоляции проводов, по которым течет ток, от внешних предметов.

Вопросы

  1. Какие вещества называют проводниками электричества?
  2. Какие вещества называют изоляторами?
  3. Назовите проводники и изоляторы электричества.

Электрическая цепь и ее составные части

Источником электрического тока может служить батарея (гальванический элемент).

На электростанции электрический ток вырабатывают генераторы, приводимые в действие от паровых и гидравлических турбин.

Электродвигатели, лампы, плитки, работающие от электрического тока, называют приемниками или потребителями. Электрическую энергию доставляют к приемнику по проводам.

Чтобы включать и выключать в нужное время приемники электричества, применяют выключатели. Источник тока, приемники и выключатели, соединенные между собой проводами, составляют электрическую цепь.

Чтобы в цепи был ток, она должна быть замкнутой, т. е. состоять только из проводников электричества. Если в каком-нибудь месте провод оборвется или вместо него будет поставлен изолятор, ток в цели прекратится. Такую цепь называют разомкнутой.

Вопросы

  1. Какова роль источника тока в цепи?
  2. Из каких частей состоит электрическая цепь?
  3. Что такое замкнутая цепь? разомкнутая?
  4. Какие приемники или потребители вы знаете?

Электрические схемы

Изучая географию, вы пользуетесь планом и картой. На плане и карте при помощи условных топографических знаков нанесены леса, селения, горы и реки.

В электротехнике тоже применяют карту-чертеж. На таком чертеже условными обозначениями изображают источники, приемники, выключатели, провода и изделия, из которых состоит электрическая цепь, а также соединения между ними. Такой чертеж называют электрической схемой.

Зная условные обозначения (смотрите таблицу ниже), нетрудно разобраться в электрической схеме. Если на одной и той же схеме повторяются одинаковые обозначения, то около условных знаков ставят числа, а в прилагаемой к схеме табличке указывают размер, тип и назначение.

Вопросы

  1. Что представляет собой электрическая схема?
  2. Что изображают на электрической схеме?

Условные обозначения составных частей электрической цепи на схемах

Название Условное обозначение
Провод
Изгиб провода
Пересечение двух проводов без соединения их
Пересечение двух проводов с соединением их
Ответвление провода
Соединение провода с землей
Источник тока (батарея, аккумулятор)
Электрическая лампа
Выключатель
Электрический предохранитель
Штепсельная розетка
Штепсельная вилка
Зажим
Кнопка (кнопочный выключатель)
Электрический счетчик
Электрический генератор
Электрический двигатель

«Слесарное дело», И.Г.Спиридонов,
Г.П.Буфетов, В.Г.Копелевич

В штепсельную розетку при помощи штепсельных вилок включают в электрическую цепь переносные осветительные или соединительные шнуры электробытовых приборов. В основании из изоляционного материала штепсельной розетки укреплены два латунных гнезда, к которым присоединяют провода от электрической сети. Штепсельная розетка Штепсельная вилка состоит из корпуса с отверстием для шнура. В корпусе из изоляционного материала имеются металлические втулки…

В производственных помещениях, помимо выключателей, устанавливают общие рубильники. В больших домах рубильники позволяют отключить сразу целый участок электрической сети (например, этаж или группу квартир). В школе рубильники устанавливают в распределительных закрытых щитах учебных мастерских, где они служат для включения электродвигателей различных станков. Рубильники бывают: одно-, двух- и трехполюсные. Рубильники а — однополюсный; б — двухполюсный;…

Часто приходится присоединять провода электрического шнура к патрону, выключателю, штепсельной розетке и к зажимам электроприборов. Для этого концы подключаемых проводов чаще всего заделывают кольцом, если их надевают на болты, иногда — тычком, когда их вставляют в специальные втулки и крепят винтами. Заделка концов проводов а — кольцом; б — тычком. При заделке кольцом концы проводов…

Неисправности электробытовых приборов

Если прибор не работает, то следует: включением настольной или специальной контрольной лампы проверить, исправна ли штепсельная розетка; при исправной розетке проконтролировать включением той же лампы, не повреждены ли шнур прибора и контакты штепсельной вилки. Если штепсельные розетка и вилка, а также шнур исправны, поврежден сам прибор. Прибор может не действовать, если перегорел нагревательный элемент или…

Основные электрические величины и способы их измерения

К основным электрическим величинам электрической цепи относятся сила тока, напряжение и сопротивление. Сила тока Под силой тока понимают электрический заряд, проходящий через поперечное сечение провода в единицу времени. Пользуясь выражениями «сила тока», «сильный ток», «слабый ток», мы должны знать, что означают эти выражения. Выражение «сильный ток» означает, что по цепи в единицу времени протекает большой…

Источник: https://www.ktovdome.ru/60/392/197/11389.html

Понравилась статья? Поделить с друзьями:
Добавить комментарий