Токовая защита блока питания схема

:: УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ ::

Токовая защита блока питания схема

   Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых источниках питания. Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.

Схема блока защиты БП

   Чтобы спаять схему вам понадобится:

  1. 1 — TL082 сдвоенный ОУ
  2. 2 — 1n4148 диод
  3. 1 — tip122 транзистор NPN
  4. 1 — BC558 PNP транзистор BC557, BC556
  5. 1 — резистор 2700 ом
  6. 1 — резистор 1000 ом
  7. 1 — резистор 10 ком
  8. 1 — резистор 22 ком
  9. 1 — потенциометр 10 ком
  10. 1 — конденсатор 470 мкф
  11. 1 — конденсатор 1 мкф
  12. 1 — нормально закрытый выключатель
  13. 1 — реле модели Т74 «G5LA-14»

Подключение схемы к БП

   Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания. Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.

  • Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается «высокий» уровень.
  • Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается «низкий» уровень.

   Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в «высоком уровне», его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, «высокий уровень» будет приближаться к +12 В. Когда ОУ находится в «низком уровне», его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.

   При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением.

Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него.

Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.

   Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.

   Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт — 3 или 5 Вт резистора будет более чем достаточно.

   Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его.

Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка.

Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта.

Поделитесь полезными схемами

СХЕМА ПРОСТЫХ СВЕТОДИОДНЫХ ЧАСОВ    Принципиальная электрическая ихема простых часов на светодиодах, собранных с применением микроконтроллера PIC16F628A. Могут показывать также температуру.
ЗУ ДЛЯ АВТО   В отличие от другого зарядного устройства, данное усовершенствованное зарядное устройство обеспечивает автоматическое поддержание аккумуляторной батареи в рабочем состоянии не давая ей разряжаться ниже установленного уровня. Описанный цикл работы устройства позволяет использовать eгo для автоматической тренировки аккумуляторных батарей циклами «заряд — разряд» при подключении к нему параллельно аккумуляторной батарее разрядного резистора.
САМОДЕЛЬНЫЙ ВЫСОКОВОЛЬТНЫЙ ГЕНЕРАТОР    Провел множество экспериментов и обнаружил много интересных вещей: Один провод заземлен на батарею, второй подключен к обычной лампочке. Внутри ионизируется аргон, которым она заполнена, создавая красивые эффекты. Также ее можно брать руками — ионизация еще сильнее.
Читайте также  Защита от скачков напряжения 220в для дома
СХЕМА ТЕРМОСТАБИЛИЗАТОРА     Налаживания особо не требуется. Если все собрано верно схема работает сразу после первого включения. 

Источник: http://samodelnie.ru/publ/samodelnye_bloki_pitanija/ustrojstvo_zashhity_dlja_ljubogo_bloka_pitanija/3-1-0-250

Защита от переполюсовки и КЗ зарядного устройства, блока питания своими руками

  • 1 Вариант 1
  • 2 Вариант 2
  • 3 Вариант 3
  • 4 Итог

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.

В этой статье будет рассмотрено 3 варианта защит от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Вариант 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

 Эдуард Орлов –  

Прикрепленные файлы: СКАЧАТЬ.

Источник: https://volt-index.ru/muzhik-v-dome/kak-sdelat-zashhitu-ot-perepolyusovki-dlya-bloka-pitaniya.html

Регулируемый блок питания с защитой от превышения тока нагрузки | Все своими руками

В статье описывается простой блок питания на трех микросхемах — К157ХП2, LM358N, К142ЕН19 и транзисторе КТ827А. Выходное напряжение можно регулировать в пределах от 1,3В до 24В, при этом номинальный ток нагрузки равен 3А. Схема стабилизатора блока питания имеет защиту от превышения тока нагрузки.

Схема блока питания показана на рисунке 1.

В качестве сетевого трансформатора применен трансформатор от старых телевизоров ТС-180.

Тс 180 datasheet pdf

С трансформатора сматываются все вторичные обмотки, оставляют только первичную. Наматывают новую вторичную обмотку, состоящую из 180 витков обмоточного провода диаметром 1,5мм. По 90 витков на каждой катушке трансформатора.

При этом выходное переменное напряжение на выходе трансформатора в режиме ХХ должно быть примерно 22 вольта.

Читайте также  Бп на lm317 с защитой от кз

Превышать этот уровень не следует, так как после выпрямления диодами VD1 и VD2 и фильтрации конденсатором С3, состоящего из трех конденсаторов по 2200,0×50В, значение этого напряжения будет уже равно его амплитудному значению 32 вольта, а это предел напряжения питания микросхемы DA1 LM358N.

LM358N Datasheet PDF

Схема выпрямителя двухполупериодная со средней точкой. Заметьте, что средняя точка соединена с общим проводом через резистор R1, являющий датчиком тока для схемы защиты от короткого замыкания.

В качестве регулирующего транзистора применен отечественный биполярный составной n-p-n транзистор КТ827А

Работа схемы

Стабилизатор напряжения блока питания реализован на операционном усилителе микросхемы DA1.2, являющимся усилителем ошибки. Опорное напряжение для этого усилителя берется с микросхемы стабилизатора напряжения DA3 К157ХП2, имеющей внутренний термостабильный источник опорного напряжения (ИОН) 1,3 В. Выводы этого стабилизатора скоммутированы на минимальное выходное напряжение, т.е. 1,3В. Отсюда и минимальное выходное напряжение блока питания, ему равное.

К157ХП2 Datasheet PDF

На инвертирующий вход DA1.2 подается часть выходного напряжения блока питания через резистивный делитель R10 и R11. От величины резистора R11 зависит максимальное выходное напряжение БП. Если вам нужно другое максимальное напряжение, то его можно вычислить по формуле приведенной ниже. Допустим нам нужно на выходе максимальное напряжение 12 вольт. Переменное сопротивление оставляем с величиной 1,5 кОм. Опорное напряжение у нас 1,3 В. Вычисляем R10.

С выхода усилителя ошибки сигнал поступает через ограничивающий резистор R9 на базу управляющего транзистора VT1. В сбалансированном режиме схемы напряжение на движке переменного резистора R10 всегда будет равно напряжению ИОН. «Шаг влево, шаг вправо» этого напряжения будет вызывать соответствующую реакцию усилителя ошибки. Допустим, по какой-то причине просело напряжение на выходе БП, уменьшилось напряжение и на инвертирующем входе DA1.

2 относительно напряжения ИОН 1,3В. Значит, увеличится выходное напряжение ОУ и соответственно на базе транзистора VT1. Транзистор приоткроется до такого состояния, при котором напряжение на движке R10 сравняется с 1,3В. Если напряжение на выводе 2 будет больше 1,3 вольта, то транзистор VT1 будет закрываться. Я это к чему. Что если вообще выключить опорное напряжение на выводе 3, то регулирующий транзистор полностью закроется.

А на этом и построена схема защиты от превышения тока нагрузки.

Микросхема DA3 имеет вывод Вкл\Выкл – 9. Если на его подать напряжение больше 2 вольт, то стабилизатор этой микросхемы начинает работать в штатном режиме, если это напряжение снять, то стабилизатор выключается, что мне очень нравится, полностью, выходное напряжение практически равно нолю. А теперь рассмотрим полный алгоритм работы схемы защиты. Допустим нам надо огранить ток нагрузки на уровне 3А. Протекая через резистор R1, этот ток вызовет на нем падение напряжения U=IxR =3×0,05=0,15B.

Это напряжение усилится ОУ DA1.1 до уровня, в нашем случае, равном 5В. Что бы получить такое напряжение, надо, чтобы Кус этого усилителя был равен 5B/0,15И = 33,33 (3). А Кус зависит от соотношения величин резисторов R2 и R4. Кус = R4/R2, 4700/100 = 47. Естественно величину резистора R4 надо уменьшить до 3300Ом. С выхода усилителя напряжения датчика тока сигнал подается на делитель напряжения 1:2 – R5 и R6.

В конечном итоге на вход компаратора, роль которого выполняет параллельный стабилизатор напряжения DA2 К142ЕН19 с напряжение ИОН, равному 2,5 вольта, подается сигнал величиной два с половиной вольта.

Если ток нагрузки увеличится, то увеличится и напряжение на входе 1 микросхемы DA2 относительно напряжения ИОН, а это приведет к открыванию внутреннего транзистора данной микросхемы, возникнет ток, протекающий от плюсовой шины через резистор R7, светодиод оптрона U1, К-Э внутреннего транзистора DA2, общий провод. Светодиод засветится, тиристор оптрона откроется и зашунтирует вывод 9 DA3 на общий провод. Стабилизатор DA3 выключится, пропадет напряжение на выводе 3 микросхемы DA1.

2, и наконец-то закроется транзистор VT1. Напряжение на выходе БП упадет практически до нуля. Для возвращения схемы после устранения перегрузки в рабочее состояние достаточно нажать и отпустить кнопку SB1. Имейте ввиду, что время срабатывания защиты очень маленькое. Поэтому могут быть проблемы с подключением емкостных нагрузок, Если время заряда емкости нагрузки будет больше времени срабатывания защиты, то защита постоянно будет такую нагрузку отключать.

На этом все. Успехов. К.В.Ю.

Скачать статью

Скачать “Регулируемый-блок-питания-с-защитой-от-КЗ” Регулируемый-блок-питания-с-защитой-от-КЗ.rar – Загружено 77 раз – 133 KB

273

Источник: http://www.kondratev-v.ru/bloki-pitaniya/reguliruemyj-blok-pitaniya-s-zashhitoj.html

Регулируемый блок питания с защитой

   У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно.

Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть.

Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

   Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:

Читайте также  Какие средства защиты относятся к индивидуальным

   Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио.

При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер.

Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:

   На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.

   Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять  выходящие провода с этой схемы, приведу следующий рисунок:

   Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:

   Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.

   Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется  мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:

   Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым.

В первом случае,  выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания.

Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:

   На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:

   Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.

   Это проект основополагающего прибора, который все те, кто занимается радиолюбительством, должны были сделать в первую очередь, но на деле руки до него доходят не скоро… Мы имеем в виду универсальный и мощный блок питания. Предлагаемая схема обеспечивает два канала 0-25V при регулируемом токе защиты 0-5A. Эта версия БП работает не только с дефицитными, для многих электронщиков, MOSFET-ами, но и с обычными биполярными транзисторами, и даже гораздо лучше.

Особенности схемы блока питания

  • Выходное напряжение регулируется от 0 до 25 В
  • Выходной ток регулируется от 0 до 5 А
  • Цифровое считывание значений тока и напряжения.

  • Защита от короткого замыкания
  • Низкая стоимость всех используемых деталей в схеме

   Прежде чем браться за этот блок питания, вы должны найти трансформатор, который может выдавать около 24 В 5 А и ещё одну обмотку на 40 В 200 мА. В данном случае использовался трансформатор 30 В.

Операционный усилитель LT7013 — это контроль напряжения. В схеме есть очень интересный компонент ZXCT1009, который работает как токовое зеркало. Он генерирует ток проходящий через регулятор R8, который преобразует его в напряжение.

   Переменные резисторы R11 и R12 выставляют напряжение и ток на выходе. А переменник R19 нужен для того, чтоб установить напряжение 32 В на выходе LM317, для питания самого регулируемого стабилизатора БП. Обратите внимание, что на контакт J3 должно подаваться 40 вольт, а не 4 — это ошибка схемы.

   Диоды моста выбирайте по справочнику на соответственный ток, но это и так понятно. Транзистор BDW93 — составной. Элемент схемы цифрового ЖК индикатора Y1 — пьезозуммер, сигнализирующий о срабатывании защиты.

Схема цифрового индикатора БП

   Если вы осилили сам лабораторный источник питания, можете ещё немного поднапрячься и соорудить к нему достойный цифровой вольтамперметр. Подключите этот блок питания к LCD индикатору и он наглядно сообщит напряжения и токи обеих каналов. АВ-метр делается на основе микроконтроллера ATMega32-4, прошивка которого есть в архиве.

Источник: http://el-shema.ru/publ/pitanie/reguliruemyj_blok_pitanija_s_zashhitoj/5-1-0-321

Понравилась статья? Поделить с друзьями:
Добавить комментарий