Как проверить сопротивление заземления

Содержание

Измеритель сопротивления заземления — проверяем работоспособность системы электробезопасности

Как проверить сопротивление заземления

Действие защитного заземления состоит в том, что при контакте человека с оказавшимся под напряжением элементом ток течет по пути наименьшего сопротивления, то есть в землю.

Словосочетание «наименьшее сопротивление» является ключевым: при большом его значении, заземление от удара током не спасет.

Для проверки требуется специальный прибор — измеритель сопротивления заземления.

Как выполняется измерение сопротивления заземления

Все способы определения сопротивления опираются на закон Ома. Вот его математическое выражение:

R = U / I, где

  • R — сопротивление, Ом;
  • U — напряжение, В;
  • I — сила тока, А.

То есть, для определения искомой величины исследуемый объект следует подключить к источнику электроэнергии с точно известным напряжением и замерить силу протекающего тока, затем произвести вычисления по приведенной формуле.

В случае с кабелем все понятно: необходимо приложить щупы омметра к обоим его концам. Но система заземления устроена сложнее: она состоит не только из шин и электродов, но и из грунта, в который те вбиты. Следовательно, здесь требуется иной подход. Применяют множество методов, у каждого — свои преимущества и недостатки. Вот наиболее распространенные:

  • двух-, трех- и четырехпроводной (это отдельные методы);
  • компенсационный.

Нередко используют способ пробного электрода.

Необходимые приборы

Обычный мультиметр для решения данной задачи не подходит: значительной окажется погрешность измерений. С его помощью владелец объекта может осуществить проверку для себя, с целью приблизительной оценки работоспособности заземления. Но официальные контролирующие организации такие измерения принимать во внимание не будут.

Для измерения сопротивления заземления разработаны специальные приборы. Моделей существует достаточно много. Они делятся на три типа:

  1. стрелочные (аналоговые) с ручным электрогенератором;
  2. стрелочные с гальваническими батареями;
  3. цифровые (оснащены микропроцессором) с клещами для бесконтактных измерений: питаются от батареек, результаты отображаются цифрами на жидкокристаллическом мониторе.

Аналоговый прибор

Для каждой модели тот или иной метод измерений (см. выше) является предпочтительным. Об этом сообщается в инструкции к прибору, схема проведения измерений часто отображается на крышке.

Рекомендуется применять именно указанный метод: прибор конструировался под него, он же использовался при испытаниях, соответственно, обеспечит максимальную точность.

Обзор популярных моделей

Ниже представлены основные характеристики аналоговых и цифровых измерителей, пользоваться которыми предпочитают профессионалы.

М-416

Проверенный временем измеритель аналогового типа. Обладает следующими достоинствами:

  • надежен;
  • прост в эксплуатации;
  • обеспечивает минимальную погрешность измерений.

Внешне напоминает омметр, на передней панели присутствует переключатель диапазона измерений.

Характеристики:

  • измеряемые параметры: активное сопротивление контура заземления и грунта;
  • питание: от батарей с суммарным напряжением 4,5 В;
  • напряжение на зажимах: 13 В;
  • ресурс комплекта автономных источников тока: 1000 измерений;
  • вес: 3 кг.

Габаритные размеры М-416 — 24,5х14х17 см.

ИС-10

Устройство цифрового типа. Обладает такими достоинствами:

  • запоминает до 40-ка результатов измерений;
  • класс пыле- и влагозащиты: IP42 (корпус в резиновой оболочке);
  • оснащен клещами для бесконтактных измерений, поэтому разрыв цепи не требуется.

Измеритель сопротивления заземления ИС-10

Прибор позволяет применять двух-, трех- и четырехпроводной методы измерений.

СА 6412

Цифровой аппарат. Как все приборы такого типа, оборудован бесконтактными клещами.

Достоинства измерителя:

  • способен работать с токами до 30 А;
  • величина тестового тока позволяет проводить замеры без отключения электрооборудования;
  • корпус выполнен из высокопрочного композитного материала Lexan;
  • клещи имеют двойные стенки.

Модель оснащена индикаторами:

  1. Короткого замыкания (срабатывает при значении сопротивления менее 0,1 Ом).
  2. Помех в исследуемой цепи.
  3. Размыкания клещей в ходе замеров.
  4. Разряда батареи.

У аппарата есть функции удержания результатов измерений и самотестирования. Он удобен при выполнении работы в темноте (благодаря функции настройки пороговых значений).

Характеристики:

  • диапазон измеряемых параметров: 0,1 – 1200 Ом;
  • максимальный диаметр (внутренний) клещей: 32 мм (в разомкнутом положении — 35 мм);
  • питание: батарейка «Крона» напряжением 9 В или равноценный ей аккумулятор;
  • ресурс источника питания: 1500 замеров.

Класс пыле- и влагозащиты — IP30.

SEW 1820 ER

Цифровое устройство.

Характеристики:

  • диапазон измеряемых сопротивлений: 0,01 – 2000 Ом;
  • тестовый ток: 2 мА (не требуется отключение электроустановки);
  • имеется функция удержания результатов измерений;
  • в комплекте помимо бесконтактных клещей имеются измерительные электроды и провода для их подключения;
  • функция измерения пошагового напряжения.

Благодаря компактности, малому весу (1 кг) и простой эксплуатации прибор SEW 1820 ER стал довольно популярным.

Инструкция по использованию

Замеры выполняют с соблюдением техники безопасности:

  1. Оператор надевает диэлектрические перчатки и боты.
  2. Инструменты должны иметь изолированные ручки.
  3. Сначала провода подсоединяют к вспомогательному электроду (заземленному), потом к измерительному прибору.
  4. Запрещено проводить измерения при повышенной влажности, в дождь и грозу.

Измерение мегаомметром

При выполнении работ придерживаются правил:

  1. Контроль сопротивления заземлителя осуществляют в период, когда оно является наименьшим — летом и зимой.
  2. Измерительные электроды вбивают на удалении 10 м или более от вертикальных электродов исследуемого заземлителя и от любых металлических подземных конструкций и коммуникаций.
  3. Для размещения измерительных электродов подбирают плотный улежавшийся грунт. Глубина погружения — более 0,5 м.
  4. Вместо штатных электродов допускается использование естественных заземлителей, не связанных с исследуемым контуром.
  5. Замер сопротивления выполняют 2 – 3 раза, устанавливая измерительные электроды в разные точки. В норме разница между показаниями прибора не превышает 5%.
  6. Перед присоединением к шине заземляющего устройства зонда измерителя в виде зажима «крокодил», с нее счищают напильником ржавчину. Если применяется зонд в виде струбцины, продавливающей окисленный верхний слой, делать этого не нужно.

Цифровые приборы могут производить измерения как бесконтактными клещами, так и посредством измерительных электродов. Второй вариант — более точный.

Рассмотрим подробно несколько методов.

Метод амперметра и вольтметра

Порядок проведения измерений:

  1. На расстоянии  20 м от проверяемого заземлителя в грунт вбивают два измерительных электрода — основной и дополнительный.
  2. После этого их подключают к источнику напряжения.
  3. Замеряют величину протекающего тока амперметром.
  4. Щупы вольтметра подключают к исследуемому контуру и основному электроду с целью определения падения напряжения между ними.
  5. Находят искомую величину, разделив результат, полученный в п. 4, на измеренную силу тока.
Читайте также  Схема подключения двойной розетки с заземлением

Описание метода

Данный способ — самый простой, но и наименее точный.

Компенсационный метод

Реализуется так:

  1. В грунт вбиваются основной и дополнительный измерительные электроды (расстояние между ними – 10-20 м) так, чтобы исследуемый заземлитель оказался между ними.
  2. Зонд измерителя подключают к шине заземлителя вблизи ее контакта.
  3. Электроды подсоединяют к аппарату, подающему тестирующий переменный ток I1.
  4. Ток I1 возбуждает во вторичной обмотке имеющегося в метрологической установке трансформатора тока ТТ ток I2, подаваемый на реостат R.
  5. Регулируя сопротивление реостата, добиваются баланса между напряжениями U1 и U2.
  6. Ток I2, протекая через первичную катушку трансформатора ИТ (изолирующий), возбуждает в его во вторичной катушке ЭДС, отображаемое подключенным к ее выводам измерителем V.

Схема измерения ЭДС компенсационный метод

Конструктивные особенности аппарата обеспечивают равенство токов I1 и I2, следовательно, после уравнивания реостатом падений напряжения, равными окажутся и rx с rаб. Ручка последнего снабжена указателем и шкалой, отображающей его сопротивление. Одновременно оно означает сопротивление исследуемого контура.

Изолирующий трансформатор необходим для защиты от блуждающих токов.

Для проверки отдельных объектов от точки 1 отсоединяют проводник и подключают его с одной стороны, к исследуемой цепи. С другой стороны подключают провод с точки 3 и зонд (точка 2).

Трехпроводной метод

Перед началом работы по данному способу необходимо отключить электроснабжение объекта либо отсоединить от заземлителя провод заземления (Pe). Иначе при замыкании фазы на корпус или иной заземленный элемент, оператор или измерительное устройство окажутся под напряжением.

Порядок измерений:

  1. Зонд (струбцину) фиксируют на шине заземлителя и подключают к аппарату.
  2. На некотором расстоянии вбивают в грунт измерительные электроды.
  3. Подсоединяют их к измерителю посредством проводов.
  4. Фиксируют величину напряжения помехи, возникающего между электродами.

    Допустимый максимум — 24 В. При большей величине электроды переустанавливают в другое место.

  5. На устройстве нажимают кнопку «Измерить» и снимают с дисплея показания.

Повторяют измерения 2 – 3 раза, располагая электроды в разных точках. Максимально допустимая разница в показаниях — 5%.

Если надо вычислить удельное сопротивление грунта или глубоко залегающих пластов, применяют четырехпроводной метод. Измерительные электроды размещают по методике Шлюмберже или Веннера.

Проведение замера с помощью бесконтактных клещей

Для реализации данного метода нужен фоновый ток от электрооборудования в контур заземления. Его величина не должна превышать максимально допустимое значение для данного прибора (обычно 2,5 А).

При использовании двух клещей, устанавливаемых на расстоянии не менее 30 см друг от друга, измерительные электроды не требуются.

Контроль сопротивления заземления — важнейшая операция. Ее требуется проводить регулярно (периодичность зависит от назначения электроустановки) и с применением специальных приборов. Обычный мультиметр для этого не годится. При отсутствии контроля будет упущен момент, когда сопротивление заземлителя из-за окисления электродов или изменения параметров грунта возрастет, и появится риск поражения персонала электротоком.

Источник: https://proprovoda.ru/provodka/zazemlenie/izmeritel-soprotivleniya.html

Проверка заземления

Защитное заземление является одним из основных видов защиты от поражения электрическим током при косвенном прикосновении. Под косвенным прикосновением подразумевается касание открытой токопроводящей части электроустановки, которая не должна быть под напряжением в нормальном режиме работы.

Например, появилось напряжение на металлическом корпусе бытового электроприбора из-за повреждения изоляции. Исправное состояние системы заземления поможет избежать многих неприятностей, а, возможно, и спасет чью-то жизнь.

На данной странице вы сможете найти наиболее полную информацию о том, как проводится проверка системы заземления на объекте.

Требования к заземлению

Согласно ПУЭ, все защитные проводники (заземляющие, проводники основной и дополнительной системы уравнивания потенциалов) не должны иметь обрывов и видимых дефектов.

Все соединения и присоединения заземляющих, защитных проводников, проводников системы уравнивания потенциалов должны обеспечивать непрерывный электрический контакт. Проводники, выполненные из стали, рекомендуется соединять при помощи сварки. Ее надежность проверяется ударом молотка. Для всех соединений необходимо предусмотреть средства защиты от коррозии, а для болтовых соединений еще и средства от ослабления контактов.

Необходимым условием является доступность соединений для осмотра. Исключение составляют герметизированные соединения или соединения, заполненные компаундом. Если оборудование подвергается частому демонтажу или оно установлено на движущихся частях, то присоединение защитного проводника должно быть выполнено гибким проводом.

Присоединение каждой открытой проводящей части электроустановки к нулевому или защитному заземляющему проводнику должно быть выполнено при помощи отдельного ответвления.

Последовательное включение в защитный проводник открытых проводящих частей не допускается. Так как при пропадании контакта на одном из заземленных устройств, пропадет контакт соответственно и на всех остальных.

Так же при помощи отдельного ответвления должно быть выполнено присоединение проводящих частей к основной системе уравнивания потенциалов. Присоединение к дополнительной системе уравнивания потенциалов может быть выполнено как при помощи отдельных ответвлений, так и при помощи присоединения к одному общему неразъемному проводнику.

В качестве РЕ-проводников в электроустановках до 1000 В могут использоваться:

  • — жилы многожильных кабелей;
  • — изолированные и неизолированные провода в общей оболочке с фазными проводами;
  • — стационарно проложенные изолированные и не изолированные проводники;
  • — алюминиевые оболочки кабелей;
  • — стальные трубы электропроводок;
  • — металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления;

Металлические кабельные лотки и короба можно использовать в качестве РЕ-проводников только в том случае, если об этом указано в документации завода изготовителя. Так же в качестве РЕ-проводника допускается использовать некоторые сторонние проводящие части.

Например, металлические строительные конструкции зданий и сооружений (фермы, колонны и т. д.), или металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т. д.).

Использование сторонних проводящих частей в качестве РЕ-проводника допускается при соблюдении следующих условий: Обеспечена их непрерывность.! Непрерывность может быть обеспечена как их конструкцией, так и с помощью соединений, защищенных от механического, химического и прочих воздействий. Так же должна быть исключена возможность их демонтажа, если не предусмотрены меры по сохранению непрерывности проводника.

Для чего нужно проводить проверку системы заземления?

Очень важно проводить регулярную проверку системы заземления. В ходе проверки выявляются многие дефекты, которые могут быть незамечены невооруженным взглядом. Это могут быть разрывы в цепи защитных проводников, ослабления контактов, механические повреждения и коррозия.

Большинство дефектов в системе заземления возникают с течением времени, однако некоторые могут появиться сразу после окончания электромонтажных работ, поэтому проверка заземления входит в обязательный перечень работ при приемо-сдаточных испытаниях.

При этом производятся следующие виды измерений и проверок: проверка наличия цепи между заземленными электроустановками и элементами заземленной электроустановки, а так же измерение сопротивления растеканию тока контура заземления.

Инженеры электроизмерительной лаборатории в ходе проверки используют специальные приборы. Целостность сварных соединений проверяются ударом молотка.

Какие приборы используются для проверки заземления?

В настоящее время существует большое количество различных приборов для измерения параметров системы заземления как импортного, так и отечественного производства. В нашей компании в качестве основных используются приборы фирмы Sonel марки MIC-3, а также отечественный измеритель сопротивления заземления М 416.

Первый прибор мы используем для проверки наличия цепи между заземленной электроустановкой и элементами заземленной электроустановки, а так же для измерения сопротивления переходных контактов. Второй прибор используется для измерения сопротивления растеканию тока заземлителя.

Оба прибора зарекомендовали себя с лучшей стороны, без проблем проходят ежегодную поверку.

Кто может производить проверку заземления?

Производить проверку заземления должна специализированная организация, которая имеет свидетельство о регистрации электроизмерительной лаборатории, выданное Федеральной службой по экологическому, технологическому и атомному надзору. Сотрудники электролаборатории должны иметь удостоверение по электробезопасности с группой не ниже III.

Как часто производят проверку заземления?

Проверка заземления производится при текущем ремонте, при капитальном ремонте, а так же при проведении межремонтных испытаний электрооборудования электроустановок. Сроки проверки устанавливает технический руководитель с учетом заводских инструкций, состояния электроустановок и местных условий. Согласно ПТЭЭП 2.7.9 раз в полгода должен производиться визуальный осмотр видимой части ЗУ, результаты осмотров должны заноситься в паспорт ЗУ.

Переходное сопротивление контактов должно быть не выше 0,05 Ом.

Методика проверки сопротивления переходных контактов защитных проводников

Перед началом измерений производят визуальный осмотр целостности заземляющих проводников. Если измерения производятся без отключения испытуемого оборудования, то необходимо предварительно убедиться в отсутствии напряжения на корпусе оборудования. При измерении сопротивления прибором MIC-3 создается цепь тока корпус электрооборудования — прибор — магистраль заземления — заземляющий проводник — корпус.

После проведения измерения на дисплее высвечивается значение переходного сопротивления. Данные заносятся в протокол.

Методика измерения сопротивления растеканию тока контура заземлителя

Методику измерения сопротивления заземляющих устройств рассмотрим на примере проведения этих работ прибором М 416. Для более точного измерения, прибор необходимо расположить как можно ближе к измеряемому заземлителю. Это позволит снизить влияние на результат сопротивление проводов, соединяющих Rx с зажимами 1 и 2. К зажиму 3 подключается потенциальный электрод (зонд), к зажиму 4 — вспомогательный электрод.

Расстояния между электродами должны быть, как указано на рисунках 1-4. Глубина погружения в грунт электродов должна быть не менее 500 мм. Для повышения точности измерений грунт вокруг электродов можно увлажнить или забить дополнительные электроды. Дополнительные зонды забиваются на расстоянии не менее 2-3 метров друг от друга и соединяются электрически. Измерения проводятся по схемам, указанным на рисунках 1-4.

В случае, когда измерение проводится по схемам 1 или 3, в итоговый результат входит сопротивление провода, соединяющего зажим 1 с Rx. Такие схемы подходят для измерений, в которых не требуется большая точность. Для измерения сопротивления сложных заземлителей используют схему, указанную на рис. 3, где d — наибольшая диагональ измеряемого контура заземляющего устройства.

Предел измерения прибора М 416 от 0,1 до 1000 Ом.

Согласно ПТЭЭП 2.7.7 — Заземляющие проводники, которые проложены открыто должны иметь защиту от коррозии, а также должны иметь окраску черного цвета.

скачать протокол измерения сопротивления заземляющих устройств

скачать протокол проверки наличия цепи между заземлённой электроустановкой и заземлёнными элементами

Источник: http://www.olimp02.ru/elektroizmeritelnaya-laboratoriya/proverka-zazemleniya/

Стоимость работ по проверке заземления

от 8000 рублей

  • Стоимость выезда, измерение сопротивления заземляющего устройства, тех-отчёт

от 42 рублей за точку

  • Проверка наличия цепи между заземлителями и заземленными элементами

Защитным заземлением называют соединение проводящих частей электрооборудования, по которым не должен течь ток, с землёй. Функция контура заземления – защита людей от поражения током и электрооборудования от выхода из строя в случае появления электрического потенциала на его проводящей нетоковедущей части. Это может случиться, например, из-за повреждения изоляции кабеля или из-за неисправности оборудования.

В случае короткого замыкания через заземление идёт большой ток. Поэтому даже не очень большое сопротивление контура заземления может вызвать значительное падение потенциала на нетоковедущей части оборудования, которое попало под напряжение. Данный сбой может стать причиной возникновения опасной ситуации.

Поэтому сопротивление растеканию тока заземляющего устройства должно иметь минимальные значения, чтобы обеспечивать наибольшее снижение потенциала, появившегося на проводящей части оборудования. Такие испытания проводятся, чтобы удостовериться в том, что этот параметр соответствует норме.

Ток через заземляющее устройство – аварийное явление. Поэтому при исправной системе защиты от аварийных ситуаций ток через заземлитель будет идти очень короткое время (сотые-десятые доли секунды). За это время успеет сработать либо устройство защитного отключения, либо (если УЗО нет, а через заземление идёт большой ток) сработают аварийные предохранители или автоматические выключатели.

Проверка сопротивления заземлителя

Сами номинальные значения зависят от напряжения, с которым работает оборудование и удельного сопротивления грунта. Максимальные значения сопротивления контура заземления электроустановок представлены в ПТЭЭП (приложение 3.1, таблица 36). Проводятся эти работы в период, когда сопротивление грунта обладает максимальным значением (засушливая погода либо сильное промерзание).

На этом фото можно увидеть как происходит измерение сопротивления заземляющего устройства, показатели достаточно хорошие 0,14 Ом

Периодичность проведения данных работ устанавливается также ПТЭЭП (приложение 3, п.26).  Согласно действующим правилам измерение сопротивления заземляющего устройства должно проводиться раз в 6 лет или чаще, если есть подозрения о нарушении структуры ЗУ.

Само соединение заземляемого объекта с землёй называется металлосвязью. Измерение переходного сопротивления контактов (то есть металлосвязи) также должно проводиться не менее одного раза в год. ПТЭЭП определяет максимальное значение этого параметра в 0,05 Ом.

На этом фото ГЗШ — или главная заземляющая шина.

Это напряжение, под которое попадает человек, который прикоснулся к заземлённой установке, когда по ней проходит ток. Максимальное значение этого параметра определено в ПТЭЭП (приложение 3, п.26).

Оно зависит от расчётной длительности воздействия (чем дольше действует напряжение, тем меньше его допустимое значение). Например, если напряжение будет присутствовать на заземлителе 0,1 с, то оно может достигать 500 В.

Если же время реакции защитного оборудования на аварийную ситуацию превышает 1 с, то максимальное значение такого напряжения – 65 В.

Наша лаборатория выполнит замер сопротивления контура заземления на объекте любой сложности и в кратчайшие сроки. Так же имеется возможность выполнять измерение сопротивления заземления без использования штырей (метод токовых клещей).

Помимо измерения заземления проводится визуальный осмотр видимых частей ЗУ. Такие диагностические мероприятия нужно проводить минимум два раза в год. Кроме того, не реже одного раза в 12 лет следует проводить подробный осмотр с выборочным вскрытием грунта в тех местах, где наиболее вероятна коррозия.

Если почва в местности является агрессивной, то частота выполнения осмотра может быть увеличена. В случае, когда при проверке заземлителя оказывается, что повреждено более половины сечения, его следует заменить. Помимо этого, не реже, чем 1 раз за 6 лет проверяется состояние защитных предохранителей.

Данный перечень работ, как правило, проводит электроизмерительная лаборатория, специалисты которой имеют необходимый допуск и оборудование.

Полученные результаты измерений вместе с результатами осмотра заземлителя и замечаниями заносятся в паспорт контура заземления (паспорт заземляющего устройства).

Наши приборы

Часто задаваемые вопросы :

Если при измерении контура заземления показатели заземлителя будут плохими, можете ли вы устранить это?

Да, у нас можно заказать монтаж модульного заземлителя, а также восстановление металлосвязи, с последующими измерениями и выдачей документации.

Возможно измерение без отключения заземлителя от ГЗШ?

Возможно, у нас есть специальные клещи METREL A 1018 и А 1019, позволяющие провести измерения без кольев и отключения заземлителя.

Официальная ли у вас форма протокола?

Протоколы которые мы выдаем соответствуют ГОСТ Р 50571, также мы прикладываем свидетельство о регистрации электролаборатории и документ о поверке прибора, которым проводились испытания.

Делаете ли вы паспорт заземляющего устройства?

Да, у нас можно заказать такую услугу.

Последние выполненные работы

Источник: http://cenerg.ru/electrolaboratorya/proverka-zazeml/

Замер сопротивления контура заземления

Заземление – это электрическое соединение какого-либо электроприбора с землей.

Оно необходимо для защиты человека от поражения током в случае неисправности или повреждения электроприбора.

В роли заземлителя чаще всего используется обычный металлический стержень, но может применяться и комплекс специальной формы, состоящий из сложных элементов.

Для проверки качества заземления используют замер сопротивления контура заземления.

Принцип работы

С помощью такого замера определяют значение электрического сопротивления заземления, которое при необходимости можно снизить, увеличивая проводимость среды или площадь контакта.

Для этого повышают количество солей в земле, используют множество металлических стержней или применяю какие-то другие способы.

Устройство заземления и требования к заземлению регламентируются ПУЭ (правила устройства электроприборов и установок).

Следует знать, что простое заземление всего лишь снижает напряжение фазы, которая попала на корпус электроприбора.

Для надежной защиты жизни и здоровья человека устройство заземления желательно устанавливать совместно с защитным устройством отключения.

:

Заземляющее устройство подбирается и проектируется индивидуально для каждого отдельного случая.

Замер сопротивления контура заземления производится сразу же после ввода жилого объекта или предприятия в эксплуатацию.

Дальнейшие измерения производятся один раз в год.

Строение и параметры устройства заземления зависят от некоторых факторов: состава и типа почвы, влажности почвы и т.д. Прежде чем устанавливать заземление составляют проект.

Измеряется сила сопротивления устройства заземления специальными приборами, которые позволяют точно и быстро определить удельное значение сопротивления грунта, заземляющего стержня, а также его элементов.

Сопротивление заземляющего устройства может измеряться четырех-, трех- и двухполюсными методами. Для многократного замера в комплект прибора входят специальные клещи.

Приборы для измерения сопротивления могут учитывать различные параметры, способные повлиять на ход измерений, и исправлять полученные результаты.

Процедура измерения

Сама процедура измерения проводится так: через устройство заземления замыкают искусственную цепь электрического тока и на ней производят измерение падения напряжения.

Рядом с испытуемым стержнем заземления размещают вспомогательный электрод, который подключают к тому же источнику электрического напряжения.

Затем измерительным зондом проводят измерения падения напряжения на первом стержне. Замеры производятся в зоне нулевого потенциала.

Такой метод измерения качества заземления используется чаще всего.

Методика измерения сопротивления заземления

Сопротивление заземления должно измеряться летом или зимой, когда сопротивление грунта принимает большее значение.

Значения сопротивления устройств заземления могут быть разными для каждых отдельных случаев, например, для частного дома значение сопротивления устройств заземления составляет 30 Ом.

Для замеров эффективно используется двух-, трех- или четырех полюсная методика измерения сопротивления заземления.

При выполнении замеров сопротивления необходимо следовать соответствующим инструкциям:

  • потенциальный зонд для измерения сопротивления размещают на контрольном участке между заземлителем и токовым вспомогательным зондом;
  • расстояние от основного заземлителя до токового вспомогательного зонда в пять раз превышать глубину заземляющего стержня или длину полосового электрода;
  • при замере сопротивления у комплекса системы заземлений это расстояние вычисляется в зависимости от большей длины диагонали, которая проходит между отдельными устройствами заземления.

В некоторых случаях может потребоваться дополнительное измерение сопротивления заземления. Например, замеры сопротивления проводятся во множестве подземных коммуникаций.

В таком случае проводится несколько измерений при разных расстояниях и направлениях лучей между зондами. В качестве реального значения считают наихудший результат.

:

Сопротивление устройства заземления в любое время года не должно превышать допустимую норму значения.

Со всеми максимально допустимыми значениями можно ознакомиться с помощью приложения 3 (ПТЭЭП) или таблицы 1.8.3 (ПУЭ-7).

Кроме измерения сопротивления устройств заземления также следует производить замеры сопротивления изоляции.

Такие измерения покажут, в каком состоянии находится изоляция электрических цепей и электрооборудования.

Способы измерения сопротивления изоляции, а также нормы испытаний и проверок изоляции электроприборов определяются ПУЭ, ПТЭЭП, ГОСТ и т.д.

Сопротивление изоляции измеряется специальным прибором – мегомметром.

Такой прибор состоит из генератора непрерывного тока с ручным приводом, добавочных сопротивлений и магнитоэлектрического логометра.

Перед началом замеров следует проверить, что на объекте испытаний нет напряжения. Изоляцию тщательно очищают от грязи и пыли, после чего объект заземляют на 2-3 минуты. Это необходимо для снятия остаточных зарядов.

К испытываемому прибору или линии мегомметр присоединяют с помощью раздельных проводов с изоляцией, имеющей большее сопротивление, чаще всего не менее 100 Мом.

Замеры сопротивления изоляции производят при устойчивом положении приборной стрелки. Для этого следует быстро и равномерно поворачивать ручку генератора.

Точное сопротивление изоляции определяют по показанию стрелки мегомметра. По окончании замеров испытываемый объект нужно разрядить.

Цены на услуги

Замеры сопротивления изоляции и заземления можно заказать в специализированных фирмах или электролабораториях.

Самостоятельно производить такие измерения не рекомендуется, так как это очень опасно.

Цена замера сопротивления контура заземления и изоляции зависит от сложности работ, а также дальности объекта (командировочные расходы).

Заполнение протокола измерений и технического отчета включены в стоимость испытаний. Поэтому отдельно за них платить не придется.

Источник: http://stroyremned.ru/remont/elektrika/787-zamer-soprotivleniya-kontura-zazemleniya.html

Понравилась статья? Поделить с друзьями:
Добавить комментарий